An Exact Solution of Stikker's Nonlinear Heat Equation
نویسنده
چکیده
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected].. Abstract. Exact solutions are derived for a nonlinear heat equation where the conductivity is a linear fractional function of (i) the temperature gradient or (ii) the product of the radial distance and the radial component of the temperature gradient for problems expressed in cylindrical coordinates. It is shown that equations of this form satisfy the same maximum principle as the linear heat equation, and a uniqueness theorem for an associated boundary value problem is given. The exact solutions are additively separable, isolating the nonlinear component from the remaining independent variables. The asymptotic behaviour of these solutions is studied, and a boundary value problem that is satisfied by these solutions is presented. 1. Introduction. Considerable work has been done in the analysis of certain types of nonlinear heat conduction (diffusion) equations where the conductivity (dif-fusivity) is a function of the temperature (concentration) [2], [6]. The porous media equation, a nonlinear diffusion equation of this type, is an example [1], [9]. A review of some nonlinear equations that admit exact solutions has been completed recently by Rogers and Ames [10]. Some analysis has also been done for equations where the conductivity is a function of the temperature gradient or its magnitude [3]. In this paper we shall develop exact solutions for the following two nonlinear heat conduction equations in 1R3:
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملHybrid differential transform-finite difference solution of 2D transient nonlinear annular fin equation
In the present paper, hybrid differential transform and finite difference method (HDTFD) is applied to solve 2D transient nonlinear straight annular fin equation. For the case of linear heat transfer the results are verified with analytical solution. The effect of different parameters on fin temperature distribution is investigated. Effect of time interval of differential transform on the stabi...
متن کاملNonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution
This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 55 شماره
صفحات -
تاریخ انتشار 1995